Diketahui log 3 =a dan log 2 =b maka log 18

Jawaban: 1

Jawaban

  • Jawaban diposting oleh: saya3191

    Penjelasan dengan langkah-langkah:

    log18 = log9xlog2

    Log18 = log3² + log2

    log18 = 2 log3 + log 2

    log 18 = 2a + b

  • Jawaban diposting oleh: indy3754
    15log 60
    → (²log 60)/(²log 15)
    → (²log (2² × 3 × 5))/(²log (3 × 5))
    → (²log 2² + ²log 3 + ²log 5)/(²log 3 + ²log 5)
    → (2 + a + 1/b)/(a + 1/b)
    → ((2b + ab + 1)/b)/((ab + 1)/b)
    → (ab + 2b + 1)/(ab + 1)
  • Jawaban diposting oleh: david49836
    2 log 75 = 2 log 3.5.5
    = 2 log 3 + 2 log 5 + 2 log 5
    = a + 1 / 5 log 2 + 1 / 5 log 2
    = a + 1/b +1/b
    = a + 2/b

    ket : 2log5 = 1 / 5log2
  • Jawaban diposting oleh: jda57
    2'log 3 = a
    5'log 2 = b
    15'log 12 = ²log 12 / ²log 15
                  = (²log 2² x 3) / (²log 3 x 5)
                  = (2 ²log 2 + ²log 3) / (²log 3 + ²log 5)
                  = (2(1) + a) / (a + 1/b)
                  = (2b + ab) / (ab + 1)
  • Jawaban diposting oleh: anah38
    2'log 3 = a
    7'log 2 = b
    7'log 3 = ab
    21'log 224 = 7'log 224  / 7'log 21
    = (7'log 7 + 7'log 32)/ (7'log 7 + 7'log 3)
    =  (1 + 7'log 2^5) / (1+ ab)
    = ( 1 + 5 b)/(1+ab)
  • Jawaban diposting oleh: dinabarus17
    2log 3 = a
    2log 5 = 1/b

    =2log5 + 2log 5 + 2log 3
    =2log (5*5*3)
    =2log 75

    =1/b + 1/b + a
    =2/b + a
    =(2+ab)/b

    Semoga mengerti :)
  • Jawaban diposting oleh: Sharonsmart

    2log 3 = a.

    5log 2 = b.

    2log 5 = 1/b.

    2 . akar 2log 1/5 = (2log 1/5)^2 . 1/2 = 2log 1/5.

    2log 1/5 = 2log 1/5 / 2log 2.

    (2log 5)^-1 / 1.

    -1 . 1/b / 1 = -1/b / 1 = -1/b.

    jawaban = -1/b.

  • Jawaban diposting oleh: Hayatun112

    log 27/32 = log 27 - log 32

    log 27 - log 32 = log (3 x 3 x 3) - log (2 x 2 x 2 x 2 x 2)

    log 27 - log 32 = 3 x Log 3 - 5 x log 2

    log 27 - log 32 = 3a - 5b

Tahukah Anda jawaban yang benar?
Diketahui log 3 =a dan log 2 =b maka log 18...